

Introduction

- Since version 11.05.2012, a Linear Fresnel performance model is integrated in SAM, based on state of the art linear Fresnel technology
- Presentation outline
 - Linear Fresnel technology
 - Fresnel performance model and integration in SAM
 - Comparison SAM/Novatec Solar models

LINEAR FRESNEL TECHNOLOGY

Linear Fresnel Basic Principle

- Similar to parabolic trough ...but simplified reflector
- Fresnel design:
 - Lower optical efficiency
 - Significant cost reductions:
 - Less sensitive to wind
 - Light weight reflector
 - More standard components
 - Lower land use
 - Cost reductions > efficiency loss
- Flexible choice of heat transfer fluid:
 - Direct Steam Generation (DSG)
 - Direct Molten Salt (DMS, currently under development)

Typical Fresnel DSG solar power plant layout

5

Novatec Solar Boilers

- Low cost turnkey solar boilers based on Fresnel technology
- Direct steam generation: water is the heat transfer fluid
- Non vacuum tube collector
 - Usually used as evaporator
 - Saturated steam
 - ─ Up to 310°C 100 bar
- Vacuum tube collector
 - Usually used as Superheater
 - Superheated steam
 - Up to 550°C 150 bar

Puerto Errado 1, Turnkey Solar Boiler, Southern Spain

Novatec Solar references

Project Name	Power output	Aperture area	Type of Project	Status	Picture	
Puerto Errado 1 (PE 1)	1.4 MW _{el}	18,500 m²	Demonstration plant	In commercial operation since March 2009		
Puerto Errado 2 (PE 2)	30 MW _{el}	302,000 m ²	Power generation plant	In commercial operation since August 2012		
Liddell Power Plant	9 MW _{th}	18,500 m ²	Solar augmentation of a coal fired power plant	In commercial operation since October 2012		

FRESNEL PERFORMANCE MODEL

Core thermal power formula

• $P_{th} = A \times (DNI \times f_{cl} \times \eta_{opt} - q_{loss})$

P_{th} = thermal power output [W_{th}]

A = aperture area (cumulated aperture

area of mirror lines) [m²]

DNI = direct solar irradiance [W/m²]

f_{cl} = mirror cleanliness factor

 η_{opt} = optical efficiency

 q_{loss} = specific heat losses [W/m²]

- - K_⊥ transversal angle modifier factor
 - K_i incident angle modifier factor

Novatec Solar Key Performance Indicators (Used in SAM)

Collector type	Non vacuum	Vacuum	Unit
Nominal optical efficiency (η ₀)	67%	64.7%	-
Heat loss coefficient u0	0.671	0.15	W/(m.K)
Heat loss coefficient u1	0.00256	0	$W/(m.K^2)$
Heat loss coefficient u2	0	0	$W/(m.K^3)$
Heat loss coefficient u3	0	7.5E-09	<i>W/(m.K⁴)</i>

Angle modifier dependency on sun position

Non vacuum - transversalNon vacuum - incidentVacuum - transversalVacuum - incident

Linear Fresnel Solar Boiler Model in SAM

- Sample file integrated in SAM:
 - On welcome screen: click on "Open a sample file"
 - Select "Novatec solar boiler"
 - Follow instructions
- This model is pre-configured:
 - Some inputs can be changed (solar field size, pressure, temperature,...)
 - ...but some must not be changed (e.g. optical efficiency, angle modifiers, heat loss coefficients)

SAM/NOVATEC RESULTS COMPARISON

Main Results: Hourly Results Comparison

Main Results: Multiple Location Annual Results Comparison

Conclusions

- Relatively good match between SAM and Novatec Solar
 - Usually around +/- 5% deviation
 - Comparison have been done for the solar field thermal energy yield only
- For sake of results correctness, technology specific inputs should not be changed:
 - All inputs of the "Collector and Receiver" tab
 - Solar field layout: recirculation configuration with an unique geometry for Superheaters
 - Superheater/Evaporator ratio can be carefully adapted to the aimed steam parameters

THANK YOU FOR YOUR ATTENTION

camille.bachelier@novatecsolar.com (+49) 721 255 173 41 www.novatecsolar.com

About the Speaker

Camille Bachelier
camille.bachelier@novatecsolar.com
(+49) 721 255 173 41
www.novatecsolar.com

- Applications Engineer Product and Market Development Department:
 - Performance Modelling
 - Storage system integration
 - Market analyses
- Working since 2010 at Novatec Solar GmbH
- Academic background:
 - Master thesis at DLR in the solar research department (Stuttgart, Germany)
 - MSc in Sustainable Energy Engineering from the Kungliga Tekniska Högskolan (Royal Institute of Technology, Stockholm, Sweden)
 - Masters degree in engineering in Energy System Engineering from the Ecole des Mines de Nantes (Nantes, France)

